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1. INTRODUCTION

Many perturbation methods have been developed to construct approximate solu-
tions for non-linear continuous systems. Analytical methods are suitable to study
weakly non-linear systems and can be divided into two principal classes, i.e.
discretization and direct techniques. In the direct approach a perturbation method
is applied directly to the original system and no assumptions are made a priori on
the form of the solution. The multiple scales method [1, 2] is often used in the direct
approach and many continuous systems have been investigated [3}7].

Among the discretization techniques, the Galerkin method is perhaps the best
known method. Recently, many papers [3}7] have demonstrated that this tech-
nique can lead to incorrect results for response-frequency and response-excitation
amplitude curves, because the predicted resulting mode shape exhibits the same
self-similarity behaviour as does a linear mode, i.e., at any instant the displacement
pattern is a multiple of some basic spatial pattern (the mode shape). However,
experimental studies indicate that the vibration modes can deviate from those of
the associated linear problem. Thus, this method is not capable of taking into
account an important physical feature of non-linear systems. On the contrary, the
predicted behaviour of the direct approach methods is not self-similar.

In this paper a reasonably simple direct approach method is presented for the
study of non-linear continuous systems. In particular, an asymptotic perturbation
method is used, which was developed previously for weakly non-linear ordinary
di!erential equations [8}10], in order to determine the transverse vibrations of
a hinged}hinged Euler}Bernoulli beam resting on a non-linear elastic foundation
with cubic non-linearities and under the action of a resonant external excitation.
The relevant partial di!erential equation is
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where u"u(x, t) is the transverse displacement, x3[0, 1] is the position along the
neutral axis, a the damping coe$cient, X the excitation frequency, and e is a small
non-dimensional parameter. The general solution of arbitrary initial conditions is
obtained in the linear, undamped and unforced case (e"0) through a mode
superposition as
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are determined by the initial conditions. The normalized eigen-
modes and natural frequencies are
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In this paper, a method is illustrated to obtain increasingly accurate solutions by
increasing the order of approximation in terms of the small parameter e. This is
accomplished by three processes: obtaining the form of solution in terms of
harmonic components, introducing a slow time scale, and solving directly for the
various harmonic components via harmonic balance. The lowest order results
coincide with solutions of the multiple-scale method, while signi"cant di!erences
arise in second order calculations. In view of this, the method is considered as
a particular version of the multiple-scale method.

In the following the fundamental resonance is considered, namely u
n
+X.

A second order approximate solution is calculated, the frequency-response and the
excitation amplitude-response curves determined and the results compared with
the numerical solution and the multiple-scale method second order solution given
in reference [11], where Boyaci and Pakdemirli, following a suggestion coming
from Rahman and Burton [12], have developed an improved multiple-scale
method.

2. THE APPROXIMATE SOLUTION FOR THE PRIMARY RESONANCE
OF THE nth MODE

It is assumed that the system is in primary resonance with the external excitation
and in order to express the nearness of the excitation frequency to the natural
frequency, detuning parameter p is de"ned through the relation

u
n
"X#ep, (5)

where p is of O (1). The slow time

q"et (6)

is introduced to include the e!ects induced by non-linear, damping and excitation
terms. These e!ects are best described in terms of the rescaled variable q, which
accounts for the need to look at larger time scales to obtain a non-negligible



LETTER TO EDITOR 565
contribution. The solution u(x, t) of equations (1) and (2) can be expressed by means
of a power series in the expansion parameter e,
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a mode in the expansion is assumed, because the system is excited near the natural
frequency of a speci"c linear mode and that mode is not involved in an internal
resonance with any other mode. For a damped system, the modes that are not
directly excited by an external source or indirectly by an internal resonance will
decay with time.

Equation (7) can be written more explicitly as
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where c.c. stands for complex conjugate of the preceeding terms. The functions
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The expansion of solution (8) is used for the elimination of the predominant linear
part of equations (1) and (2) and it allows the possible interactions among the
di!erent harmonics, created by the non-linear terms to be calculated. After insert-
ing equation (8) in complete equations (1) and (2), a number of equations are
obtained for every harmonic and for a "xed order of approximation.

For n"1 (order e0) the linear equation becomes
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Considering equations (1) and (2) for n"3 (order e) yields
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The solution of equation (13) is
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with the boundary conditions
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From equations (1) and (2) for n"1 and at the order e
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Making use of the normalization of the eigenmodes and with the de"nition
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the ordinary di!erential equation becomes
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Equations (19, 20) are invariant under the transformation f
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hence possess the corresponding symmetry. Thus, if there is an equilibrium point at
( f 0
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, 0
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!n). In order to simplify the following

analysis, only half of the system is considered. If it is assumed that the system
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contains an equilibrium point, then it actually contains two equilibria, the other
one being located at the symmetrical position under the above-mentioned trans-
formation. From equations (8), (12) and (18) we can express the de#ection to the
lowest order of approximation as
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(x) o cos (Xt!0)#o(e), (21)

where o and 0 are given by equations (19) and (20). In order to improve the validity
of the analysis, a second order calculation must be performed. Equations (1) and (2)
yields
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The term L2t/Lq2 in equation (22) can be eliminated, because equation (17) can be
di!erentiated with respect to q
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Equation (23) can be now substituted into equation (22). Subsequently, making use
of the normalization of the eigenmodes and with the de"nitions
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Equation (25) can be separated into real and imaginary parts in the usual way and
the re"ned model equations
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can be obtained.

3. FREQUENCY-RESPONSE AND EXCITATION AMPLITUDE-RESPONSE
CURVES

Equilibrium points (do/dq"d0/dq"0) of equations (19, 20) or equations (27) and
(28) correspond to periodic solutions of the original equations (1) and (2).

Using the trigonometric identity sin2 0#cos2 0"1, the frequency-response
curve can be obtained from equations (19, 20):
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However, a more accurate expression can be derived from second order equations
(27) and (28):
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are given by equation (24). Note that the second order correction to

the frequency-response curve of the multiple-scale method (see equation (51) of
reference [11]), consists of only a single term, which is essentially the last term in
equation (30), i.e. (3b
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/2X) o4, and is independent of the excitation amplitude f
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,



Figure 1. The frequency-response curve (30) for the case of primary resonance of the "rst mode, i.e.,
the detuning (p) as function of the response (o). Solid lines stand for the stable solutions and dashed
lines for the unstable solutions. (a"0)1, e"0)03, f

1
"1). Dot lines represent the solution given in

reference [11] and boxes the numerical results.
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whilst, the second order correction of the method described here takes into account
both the external excitation and the damping coe$cient. In order to establish the
stability of steady state solutions, small perturbations are superimposed in the
amplitudes and the phases on the steady state solutions and the resulting equations
are then linearized. Subsequently, the eigenvalues of the corresponding system of "rst
order di!erential equations with constant coe$cients (the Jacobian matrix can be
considered). A positive real root indicates an unstable solution, whereas if the real
part of the eigenvalues are all negative then the steady state solution is stable. Dot
lines represent the solution given in reference [11] and boxes the numerical results.

Results of numerical stability analysis are shown in Figure 2 in the plane
(k"a/p, f

n
)"(damping coe$cient-to-detuning ratio, excitation amplitude). How-

ever, if calculations are limited to the lowest order calculations, the following
analytical results are obtained:

(i) if 3k2'4 there is only one equilibrium point:
(ii) if 3k2(4, p(0, f
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Figure 2. Stability analysis in the (k, f
1
)"(damping coe$cient-to-detuning ratio, excitation ampli-

tude) plane for p(0 in the case of fundamental resonance of the "rst mode. In region A there is only
an equilibrium point, while in region B there are three equilibrium points.
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there is only one equilibrium point;

(iii) if 3k2(4, p(0, f
n
(f 0

n
there are three equilibrium points;

(iv) if 3k2(4, p'0 there is only one equilibrium point.

Boundary curves in Figure 2 are approximated for small values of e by analytical
expressions furnished in cases (i)}(iv).

Figure 3 shows a typical excitation amplitude-response curve. In particular, note
a saddle-node fold (or cyclic fold) bifurcation when the solution jumps up to
a larger stable orbit as the amplitude of the external force is increased. A fold
bifurcation corresponds to a vertical tangency in the external force-response space,
where the derivative of the response with respect to the control parameter is
in"nite. Dotted lines represent the solution given in reference [11] and boxes the
numerical results.

Figure 4 shows the spatial distribution of u(x, t) for the "rst mode as obtained
from equation (26). In order to check the formulation, solutions of equations (1)}(2)
were also obtained numerically and results from the multiple-scale method given in
reference [11] are shown. Results given by the proposed method and the multiple-
scale technique are very similar at the lowest order, but there are remarkable



Figure 3. Amplitude of the response (o) as function of the excitation ( f
1
) for the case of fundamental

resonance of the "rst mode. Solid lines stand for stable and dashed lines for unstable solutions. Dotted
lines represent the solution given in reference [11] and boxes the numerical results.
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di!erences in the approximate solutions at the second order. For the chosen values
of parameters, the proposed method furnishes a slightly better solution. For
example, in Figure 4, numerical results show that the solution (mean di!erence with
respect to the numerical solution 0)013) gives an accuracy greater than that of
multiple-scale method (mean di!erence 0)046).

4. CONCLUDING REMARKS

A method has been presented which is essentially based on the harmonic balance
and the multiple- scale methods. It has been used for the theory of approximate
analytic solutions to non-linear oscillations of continuous systems with cubic
non-linearities in the case of primary resonance. No a priori assumption on the
spatial dependence of the motion has been employed.

A system of non-linear model equations has been derived describing the modula-
tion of the amplitude and of the phase of the oscillation. Frequency-response and
excitation amplitude-response curves can be easily deduced. It has been demon-
strated that for the lowest order analysis approximate solutions given by this



Figure 4. Spatial distribution of the displacement in the case of primary resonance of the "rst mode
after a period (¹"2n/X) of the external excitation. (**) numerical solution (u(x, ¹)"u1 (x)), (} } } )
AP method (u (x, ¹)"u2(x)), ( . . .) multiple-scale method (u (x, ¹)"u3 (x)) (a"0)1, e"0)03, f

1
"1).

572 LETTER TO EDITOR
method and the multiple-scale technique are essentially identical, whilst, the second
order calculations lead to di!erent results. For the chosen values of parameters, this
method furnishes more accurate approximate solutions, but this may not be true
for other non-linear systems.

A possible drawback of the method is that time dependence is assumed at the
beginning. In this respect the usual multiple-scale method is more straightforward
since no assumptions are made on the temporal dependence of solutions, but in this
way spurious solutions can be introduced [12]. On the other hand, the assumed
temporal dependence of the solution allows more rapid calculations and furnishes
di!erent results for higher order analysis.

Numerical results demonstrate the validity of this particular version of the
multiple-scale method for higher order calculations; further study of other non-
linear continuous systems are suggested.
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